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Abstract 
The interrelation between the symmetries of convergent- 
beam electron diffraction (CBED) patterns and the 
(3+l)-dimeusional point groups of one-dimensional 
incommensurately modulated crystals is discussed. The 
symmetry subsymbol 1 for the modulated structure 
implies that the incommensurate reflections show 
no symmetry in the CBED pattern. The symmetry 
subsymbols other than T imply that the incommensurate 
reflections exhibit the same symmetries as those of the 
average structure. These results are demonstrated using 
the CBED patterns obtained from the one-dimensional 
incommensurately modulated crystals of Sr2Nb207 and 
BizSr2CaCugO8+6. It is shown that the CBED method 
can identify the (3+l)-dimensional point groups of one- 
dimensional incommensurately modulated structures. 

1. Introduction 
The method of point-group determination using conver- 
gent-beam electron diffraction (CBED) patterns has been 
established for usual (commensurate) crystals (Good- 
man, 1975; Buxton, Eades, Steeds & Rackham, 1976; 
Tanaka, Saito & Sekii, 1983; Tanaka & Terauchi, 1985; 
Tanaka, 1989). The patterns provide diffracted intensity 
distribution as a function of the excitation error (rocking 
curves). Since the CBED method is based upon dynam- 
ical diffraction, it can distinguish nonpolar crystals from 
polar crystals. As a result, the method allows the unique 
identification of all the point groups. The space-group 
determination using CBED patterns is based on dynam- 
ical extinction (Gj~nnes-Moodie lines), which permits 
an ambiguous identification of 21 screw axes and glide 
planes (Gjormes & Moodie, 1965). 181 space groups 
can be uniquely identified using Gj~nnes-Moodie lines 
(Tanaka, Sekii & Nagasawa, 1983; Tanaka, Terauchi & 
Kaneyama, 1988). The CBED method has been applied 
successfully to the symmetry determination of many 
materials (e.g. Tanaka, Sekii & Ohi, 1985; Tanaka, 1987; 
Tanaka, Tsuda et al., 1987). 

Furthermore, the CBED method can also reveal the 
characters of crystal-lattice defects: the shift vectors of 
stacking faults (Johnson, 1972; Tanaka & Kaneyama, 
1986; Tanaka, Yamada & Terauchi, 1992), the Burgers 
vectors of dislocations (Carpenter & Spence, 1982; 
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Cherns & Preston, 1986; Tanaka et al., 1988), the tilt 
angles of coherent twin boundaries (Tanaka, Terauchi 
& Kaneyama, 1991) and the strain distribution near the 
interfaces of multilayer films (Gat & Schapink, 1987; 
Cherns, Kiely & Preston, 1988; Humphreys, Eaglesham, 
Maher & Fraser, 1988). 

Recently, attention has been paid to the determination 
of atom positions (structure analysis) by CBED analysis 
(Vincent, Bird & Steeds, 1984; Tanaka & Tsuda, 1990, 
1991) and to the determination of symmetries of higher- 
dimensional crystals or incommensurately modulated 
crystals and quasicrystals (Tanaka, Terauchi, Hiraga & 
Hirabayashi, 1985; Tanaka, Terauchi, Suzuki, Hiraga 
& Hirabayashi, 1987; Saito, Tanaka, Tsai, Inoue & 
Masumoto, 1992). The incommensurately modulated 
crystals do not have three-dimensional lattice periodicity 
and are not described by three-dimensional space groups. 
The crystals, however, recover lattice periodicity in a 
space higher than three dimensions, de Wolff (1974, 
1977) showed that one-dimensional displacively and 
substitutionally modulated crystals can be described 
as a three-dimensional section of a (3+l)-dimensional 
periodic crystal. Janner & Janssen (1980) developed a 
more general approach to describe the modulated crystals 
with n modulations as the (3+n)-dimensional periodic 
crystals (n = 1, 2, ...). Yamamoto (1982) had derived a 
general structure-factor formula for the n-dimensionally 
modulated crystal (n = 1, 2, ...), which holds for both 
displacively and substitutionally modulated crystals. The 
tables of the (3+l)-dimensional space groups for one- 
dimensional incommensurately modulated crystals were 
given by de Wolff, Janssen & Janner (1981). Later, some 
corrections of the tables were reported by Yamarnoto, 
Janssen, Janner & de Wolff (1985). The analysis of 
incommensurately modulated crystals using the (3+1)- 
dimensional space groups has become familiar in the 
field of X-ray structure analysis. 

The CBED method was applied to the study of 
incommensurately modulated crystals by Steeds et aL 
(1985) and Tanaka et al. (1988). However, the (3+1)- 
dimensional analysis of CBED patterns obtained from 
incommensurately modulated crystals has never been 
carded out. The CBED method is expected to be capable 
of extension in its symmetry determination to higher- 
dimensional crystals or to the determination of higher- 
dimensional point groups and space groups. It should 
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be noted that the knowledge of the (3+l)-dimensional 
space group of a modulated crystal enables us to reduce 
the number of parameters to be determined in structure 
analysis. In the present study, we clarify the theory in- 
terrelating the symmetries of CBED patterns and (3+1)- 
dimensional point-group symbols for incommensurately 
modulated crystals. The theoretical results are verified 
using the crystals of Sr2Nb207 and Bi2Sr2CaCu208+6 
with incommensurate modulations. 

2. Symmetries of CBED patterns obtained 
from incommensurately modulated crystals 

2.1. Displacively modulated crystals 
Fig. l(a) illustrates the (3+l)-dimensional description 

of a one-dimensional displacively modulated structure. 
The arrows labeled al-a3 and a4 indicate the (3+1)- 
dimensional crystal axes. The horizon.tal line labeled 
R3 represents the three-dimensional space (real world). 
In the (3+l)-dimensional description, an atom is not 
located at a point as in three-dimensional space but 
expressed by a string, which extends along the fourth 
direction a4 perpendicular to the three-dimensional space 
R3. The parallelogram drawn with thick lines is a 
unit cell in the (3+l)-dimensional space. The unit cell 
contains two atom strings. The wavy shape of the 
atom strings, which are periodic along a4, represents 
a displacive-type modulation. The width of the atom 
strings indicates the spread of the atom in R3. The atom 
positions of the modulated structures in R3 are given 
as a three-dimensional section of the atom strings in 
the (3+l)-dimensional space. The diffraction vector G 
is written as 

G = hla* + h2b* + h3c* + h4k, 

where a set of hlh2hah4 is a (3+ 1)-dimensional reflection 
index and a*,  b * and e* are the reciprocal-lattice vec- 
tors of the real lattice vectors a, b and c of the average 
structure. The modulation wave vector k is written as 

k = kla* + k2b* + k3c*, 

where one coefficient of ki (i = 1-3) is an irrational 
number and the others are rational. The structure factor 
F(hlhghah4) for the (3+l)-dimensional crystal is given 
by de Wolff (1974, 1977) as follows: 

N 
F(hlh2h3h4) = ~ f+, exp 27ri(hl--~l + h2x~ + h3x-~3 ~) 

tt=l 

x ft~ 27ri hi + h4ki)u~ 
. 1 0  

+ (11 

where 

X~ "-" (X~ + n l )k l  + (x2 ~ + n2)k2 -'F (x~ + n3)k3. 

The symbols f~, and x~ (i = 1-3) are the atom 
form factor and the ith component of the position of 
the #th atom in the unit cell of the average structure, 

is the ith component of respectively. The symbol u i 
of the #th the displacement from the atom position x~ 

atom. Since the atom in the (3+l)-dimensional space is 
continuous along a4 and discrete along R3, the structure 
factor is expressed by the summation in R3 and the 
integration along a4. A three-dimensional section of the 
(3+l)-dimensional unit cell gives a modulated atomic 
arrangement at a unit cell of the average structure in R3. 
Then, the atom strings in the (3+ 1)-dimensional unit cell 
correspond to the sum of the atom displacements over an 
infinite number of the unit cells of the average structure. 
This means that (1) is the structure factor for the trait 
cell with lattice parameter of infinite length in R3 along 
the direction of the modulation wave vector k. 

The CBED patterns are obtained from a finite area 
of a crystal. Hence, it is necessary to use the structure 

L 
i 

H ~ a 3  

:r ff ~R3 

Fig. 1. (a) The (3+l)-dimensional description of a one-dimensional 
displacively modulated structure. The wavy strings are the (3+1)- 
dimensional description of atoms with a displacive modulation. (b) A 
finite number of the three-dimensional sections of the atom strings in 
the (3+l)-dimensional unit cell, which corresponds to a finite volume 
of the modulated structure in R3. 
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factor, which takes account of the effect of the fmite 
size, to discuss the symmewies of the CBED patterns 
obtained from the modulated structures. A finite volume 
of a modulated structure in R3 corresponds to a finite 
number of the three-dimensional sections of the atom 
strings in the (3+l)-dimensional unit cell as indicated 
in Fig. 1 (b). The structure factor for the finite volume is 
derived from (1) by rewriting the integration over a unit 
length along a4 with the summation over a finite number 
of three-dimensional sections of the atom strings. Then, 
the structure factor for the finite volume F'(hlh2hzh4) 
is written as 

N 

Ft(hlh2h3h4) --" E ftt exp 27ri(h1-~1 -t- h2-~2 + h3x-~) 
t t= l  

X { n ~ E E e x p  27ri 
7 / , 2  ' / ' / '3  

3 

where N1 < nl _< N~, N2 < n2 < N~, N3 < n3 < N~ 
and N' = (N~- N1)(N~ - N2)(N~ - N3) is the number 
of the unit cells of the average structure included in the 
specimen volume from which the CBED pattem is taken. 
The term in { } in (2) expresses the effect of the finite 
volume on the diffracted intensity. 

The symmetries of the CBED patterns can be deter- 
min&t by examination of the symmetries of the structure 
factor F'(hlh2h3h4). For simplicity, we assume that the 
modulation wave vector is written as k = k3e * and the 
modulated structure belongs to the (3+l)-dimensional 

P2/m 
space group P 1 ] " This space-group symbol indicates: 
(i) the modulation wave vector k exists inside the first 
Brillouin zone for the average structure (P); (ii) the aver- 
age structure belongs to the space group P2/m; (iii) the 
modulated structure has a twofold rotation axis, which 
is common to both the average and modulated structures 
(subsymbol 1) but does not have the mirror symmetry 
possessed by the average structure (subsymboli). For 
the twofold rotation axis of this (3+ 1)-dimensional space 
group, the structure factor F'(hlh2h3h4) [(2)] is written 
a s  

N 

F'(hlh2h3h4) = E ft, exp 27ri(hlx~ + h2--~2 + h3x--~) 
t t= l  

x { E  exp27ri[htu~ + h~.u~ 
n3 

} + (ha + h4ka)u~ + h4x21 
N 

+ E fu exp 27ri(-hlX--~a ~ - h2x~ 
/z=l  

+ h3--~a){~exp27ri[-hlu~-h2u~ 

} -q- (h3 n t- h4k3)u~ n t- h4x2] , (3) 

I 

where x~ = (x~ + 7Z3)k 3, The terms within { } in (3) 
represent the effect of the finite volume on the diffracted 
intensity. 

We consider the reflections hi h2hzh4 and hi hzhah4, 
which are equivalent with respect to the twofold rotation 
axis of the average structure. The symmetry subsymbol 
1, which is written beneath symmetry symbol 2 in 
the expression for the (3+l)-dimensional space group, 
indicates that the modulation wave vector k is trans- 
formed into itself by symmetry operation 2 of the 
average structure. It is clear from (3) that the structure 
factor F'(hl h2h3h4) is equal to the structure factor 
F'(hlh2h3h4). Hence, the intensities of the hlh2h3h4 
and hi hzh3h4 reflections are equal. It is clarified that 
the symmetry of the reflections (h4 ¢ 0) due to the 
modulated structure (incommensurate reflections) is the 
same as that of the fundamental reflections (h4 = 0) 
due to the average structure with respect to the twofold 
rotation axis of the average structure. Next, we con- 
sider the reflections hlh2hah4 and hlh2h3 h4, which are 
equivalent with respect to the mirror symmetry of the 
average structure. The symmetry subsymbol 1, which is 
written beneath symmetry symbol rn in the expression 
for the (3+l)-dimensional space group, indicates that 
the modulation wave vector k is transformed into - k  
by the symmetry operation rn. For the incommensurate 
reflections (h4 ¢ 0), the corresponding formula to the 
terms within { } of F'(hlh2h3h4) in (3) are not equal 
to those of F'(hlh2ha h4) because k3 is an irrational 
number. Hence, the intensity of the hlh2hah4 refl~tion 
is not equal to that of the hlh2h3h4 reflection. For 
the fundamental reflections (h4 = 0), the intensity of 
the hlh2h30 reflection is equal to that of the hlh2h30 
reflection because F '  (hi h2 h30) is equal to F '  (hi h2 h30). 
It should be noted that this mirror symmetry m between 
the fundamental reflections is expected to be destroyed 
owing to the dynamical diffraction effect between the 
fundamental and incommensurate reflections. In most 
modulated structures, however, the amplitude of the 
modulation wave u~ is not so large as to affect the 
symmetry of the fundamental reflections. Therefore, the 
fundamental reflections should show the symmetry of the 
average structure, while the incommensurate reflections 
lose this symmetry. The results obtained are summarized 
by the following rules. 

1. For symmetry symbol 1, both the fundamental and 
incommensurate reflections show the symmetries of the 
average structure. 

2. For symmetry symbol 1, the fundamental reflec- 
tions, in practice, show the symmetries of the average 
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structure but the incommensurate reflections do not have 
any symmetries. 

Rule 1 also holds for the symmetry symbols s, t, q and 
h of the (3+l)-dimensional space groups because those 
space-group symbols are expressed by symbol 1 in the 
frame of the (3+l)-dimensional point groups. 

Equations (2) and (3) hold for any numbers N' ,  Ni 
and N~ (i = 1-3). A change of Ni and N '  (i = 
1-3) with N' kept constant corresponds to a change 
of the illuminated specimen position, from which the 
CBED pattern is taken, without changing the illuminated 
volume. A change of all the numbers N', Ni and N" (i = 
1-3) corresponds to a change in both the illuminated 
volume and the specimen position. With these changes, 
the magnitude of the structure factor changes but the 
symmetry of the structure factor is unchanged. Even if 
N '  is reduced to one, (2) and (3) still hold. This indicates 
that the symmetry of the incommensurately modulated 
structure should appear in principle even in a CBED 
pattern taken from one unit cell of the average structure. 
These facts lead to the following results. 

(a) Even if the size and the position of an illuminated 
specimen area are changed, the intensity distribution in 
the CBED pattern changes but the symmetry of the 
pattern does not change. 

(b) The (3+l)-dimensional symmetries can appear in 
CBED patterns if more than one unit cell of the average 
structure are included in the volume from which the 
CBED pattern is obtained. In other words, to obtain 
the symmetries expected from the (3+l)-dimensional 
symmetry symbols, it is not necessary to take the CBED 
pattern from such a large specimen area whose diameter 
is larger than the approximate period of the modu- 
lated structure (the approximate least common multiple 
between the modulation wavelength and the unit-cell 
length of the average structure). 

These results as a whole ensure that the (3+1)- 
dimensional symmetries appear in the CBED patterns 
taken from a finite volume of the incommensurately 
modulated crystals. 

We have described how the (3+l)-dimensional point 
groups can be determined by the examination of CBED 
symmetries of fundamental and incommensurate reflec- 
tions using rules 1 and 2. However, it is worthwhile to 
note the following facts. If the point-group symmetry of 
the average structure and the modulation wave vector 
k are completely known, the (3+l)-dimensional point 
groups themselves are determined by inspecting only 
how the modulation wave vector k is transformed by the 
symmetry operations of the average structure, although 
the symmetries of incommensurate reflections provide 
important information for the confirmation of the point 
groups. From this, it is seen that the correct deter- 
mination of the point-group symmetry of the average 
structure is very important in the determination of the 
(3+ 1)-dimensional point groups. Then, there is no doubt 
that the point groups of the average structure can be 

determined unambiguously by the CBED metliod when 
is not so large the amplitude of the modulation wave u i 

as to affect the symmetry of the fundamental reflections. 
It should be noted that the structure analysis of 

incommensurately modulated crystals with CBED is 
difficult for the following reason. Since the experimental 
intensities of CBED patterns are obtained from a finite 
volume of incommensurately modulated crystals, (2) has 
to be applied instead of (1). However, there is no way 
to determine from experiment the correct volume to 
be summed in (2). In this case, we cannot reproduce 
the observed intensities using (2). Real X-ray structure 
analysis of the modulated crystals, in which the illumi- 
nated volume is much larger than that in CBED, may be 
conducted using (1) since the volume may be regarded 
as infinitely large. 

2.2. Substitutionally modulated crystals 
The substitutional modulation arises from a periodic 

variation of the site occupation probability of atoms. 
This type of modulated structure is also described by 
the (3+l)-dimensional periodic structure. This type of 
modulation does not originate from the modulation of 

u with x4 as in the case of the the atomic displacement u~ 
displacive type, but is expressed by the modulation of the 
atom form factor fu in (1) with x4. By substituting zero 

in (1), the structure for the displacements of atoms u i 
factor for this type of modulated structure is written as 
follows (de Wolff, 1974, 1977): 

N 

tt=l 

/01 x fu(x2)exp (27rih4x2)dx~, (4) 

where x~ = (x~ +nl)kl +(x~ +n2)k2+(x~ +n3)k3. The 
integration over a unit length along a4 indicates that the 
structure factor stands for the unit cell with the lattice 
parameter of an infinite length along the direction of the 
modulation wave vector k. The structure factor for a 
finite specimen volume F'(hlh2h3h4) is written as 

F'(hlh2hah4) 
N 

= E exp27ri(hlX~ + h2x~ + h3x~) 
tt=l 

x {EEEf t~(x~)exp(21r ih4x2)  }, 
n l  rt2 n3 

(5) 

where N1 < n l (_ N~, N 2 < n 2 _( N~, N 3 < n 3 __( N~ 
and N '  = (N~ - N1)(N~ - Nz)(N~ - N3) is the number 
of unit cells of the average structure included in the 
specimen volume. The term in { ] in (5) expresses the 
effect of the finite volume. For simplicity, we again 
assume that the modulation wave vector is written as 
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k = k3c* and the modulated structure belongs to the 
(3+ 1)-dimensional space group PP21/~ like the case in 
§ 2.1. For the twofold rotation axis of this space group, 
the structure factor of (5) is written as 

N 
F'(hlh2haha) = E exp27ri(hlx~ + h2x~ q-h.jx~) 

tz=l 

e x p  (27rih4x~) } 

N 

+ E  e x p  27ri ( -h lX  ~ - h2x ~ -~ h3x~) 
#=1 

x{En3ft~(x~)exp(27rihax~)l, (6) 

where x~ = (x~ + na)ka. The terms within { } in (6) 
express the effect of the finite volume. 

For the hlhzhah4 and hi h2h3h4 reflections, which are 
equivalent with respect to the twofold rotation axis of 
the average structure, the structure factors F ~ (h 1 h2 h3 h4 ) 
and F'(hxh2hah4) are the same, indicating that the 
intensities of these reflections are equal. Hence, the 
symmetry of the incommensurate reflections (h4 ¢ 0) is 
the same as that of the fundamental reflections (ha -- 0) 
with respect to the twofold rotation axis of the average 
structure. For the hlh2haha and hlh2h3 h4 reflections, 
which are equivalent with respect to the mirror sym- 
metry of the average structure, the intensity of the 
hlh2h3h4 reflection (h4 ¢ 0) is not equal to that 
of the hlh2h3 ha reflection because the corresponding 
formula to the terms within { } of F'(hlh2h3h4) in 
(6) are not equal to those of F'(hlh2h3 ha). From the 
repetition of a similar argument described in a previous 
section, the fundamental reflections should exhibit the 
mirror symmetry but incommensurate reflections lose 
that symmetry. Therefore, rules 1 and 2 given in § 2.1 
also hold for the substitutionally modulated crystals. 

In the substitutionally modulated case, the atom form 
factor fu cannot be determined by one unit cell of the 
average structure but is determined by the average over 
a large number of unit cells. Thus, the symmetries of 
this type of modulated structure are not determined from 
one unit cell of the average structure, as in the case of 
the displacively modulated structure. Since the CBED 
patterns, however, are taken usually from a specimen 
volume of ,,~ 10 nm diameter x ,--100 nm thickness, the 
volume is large enough to obtain the average value of 
the occupation or the average atom form factor. There- 
fore, the CBED patterns taken with usual conditions 
also exhibit the (3+1)-dimensional symmetries for the 
substitutionally modulated crystals. 

3. Experimental results 

3.1. Experimental results 
The following experiments have been carded out with 

an electron probe size of ,-,3 nm diameter. It should be 
noted that the probe size is smaller than the approximate 
period of the modulated structure, ,--,40 nm for Sr2Nb207 
and ,-,12 nm for Bi2Sr2CaCu2Os+~. 

3.1.1. Sr2Nb207. Many materials of the A2B207 
family undergo phase transformations from the space 
group Cmcm to Cmc21 and further to 1921 with decreas- 
ing temperature. An incommensurate phase appears, 
for example, between the phase with Cmc21 and that 
with /921 in La2Ti2Or (Tanaka, Sekii & Ohi, 1985). 
Sr2Nb207 transforms from the phase with Cmc21 into 
the incommensurate phase at 488 K with a modulation 
wave vector of k = ( 1 _  5)a* (5 = 0.009-0.023) 
but does not transform into the phase with /921. The 
symmetry of the incommensurately modulated structure 
of Sr2Nb207 is expressed by the (3+l)-dimensional 
space group /9c~_~1 (Yamamoto, 1988).'t" Then, the is1 
(3+ 1)-dimensional point group of the structure is written ram2 
as T IT" The symbol implies the following substance. 
The modulation wave vector k is transformed to - k  by 
a mirror symmetry operation perpendicular to the a axis 
( 1 )  and by the twofold rotation-symmetry operation 
along the c axis (~). The wave vector is transformed 
into itself by the mirror symmetry perpendicular to the 
b axis (7)" 

Fig. 2 shows a CBED pattern of the incommensurate 
phase of Sr2Nb207 obtained with [010] incidence at an 
accelerating voltage of 60 kV. The reflections indicated 
by arrows are incommensurate reflections due to the 
modulation. Other reflections are fundamental reflections 
due to the average structure. The (3+l)-dimensional 
point-group symmetries ( 7 )  about the a axis and (~) 
about the c axis appear in this CBED pattern. When 
rule 2 in § 2.1 is considered, symmetry ('~) exhibits 
mirror symmetry perpendicular to the a axis between the 
fundamental reflections but no mirror symmetry between 
the incommensurate reflections. The same symmetries 
are expected from symmetry (2) in the framework of 
the projected potential approximation. Fig. 2 shows these 
symmetries exactly. 

Fig. 3 shows a CBED pattern of the incommensurate 
phase obtained with [201] incidence at an accelerating 
voltage of 60 kV. The reflections in two rows indicated 
by arrows are the incommensurate reflections. The other 
reflections are ftmdamental ones. The (3+ 1)-dimensional 
point-group symmetry about the b axis ( 1 )  appears in 

t In the tables of de Wolff et al. (1981), the direction of the 
incommensurate component of the modulation wave vector is taken as the 
c axis. In the present case, the direction is along the a axis because of the 
use of the space-group symbol for the average structure normally used. 
So the expression for the (3+l)-dimensional space group is apparently 
different from that given in the literature. A similar situation also occurs 
in the case of Bi2Sr2CaCu208+6. 
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this pattern. From rule 1 in § 2.1, symmetry ( '~ ) displays 
mirror symmetry perpendicular to the b axis not only 
between the fundamental reflections but also between 
the incommensurate reflections. Fig. 3 clearly shows 
the mirror symmetry between both kinds of reflections. 
Fig. 4 shows a CBED pattern obtained at the same 
incidence as in Fig. 3 but from a different specimen 
area with nearly the same specimen thickness. The 
pattern shows the same symmetry as in Fig. 3 but the 
intensity distribution is different. This confirms result 
(a) described in § 2. 

3.1.2. Bi2SrzCaCu2Os+6. The oxide superconductor 
Bi2Sr2CaCu2Os+6 has an incommensurately modulated 
structure with a modulation wave vector k = k2b * + e * 
(k2 ~- 1/4.7). The symmetry of the incommensurate 
structure of this material is expressed either by a (3+1)- 
dimensional space group .,IV Bbm_b111 o r N  Bb26111 (Yamamoto, 
Hirotsu, Nakamura & Nagakura, 1989). The symbol 
N of the space groups indicate the lattice type whose 
modulation wave vector has the commensurate com- 
ponent c*. Then, the (3+l)-dimensional point group 

m r n m  m 2 m  The two of the structure is written as 1 i i or 111" 
possible (3+l)-dimensional point groups originate from 
an ambiguous determination of the space group of the 
average structure. 

Fig. 5 shows a CBED pattern of Bi2Sr2CaCu2Os+6 
obtained with [001] incidence at an accelerating voltage 
of 60 kV. A large size of diffraction discs was chosen 
for ease of identification of the symmetry of fundamental 
reflections, where the fundamental and incommensurate 
reflection discs overlap. The intense diffraction discs are 
fundamental reflections. The intensities of incommensu- 
rate reflection discs are sufficiently weak not to affect the 
symmetry of fundamental reflections. The fundamental 
reflections show mirror symmetry perpendicular to the 
a axis, but do not show mirror symmetry perpendicular 

to the b axis. These symmetries revealed that the space 
group of the average structure is not Bbmb but Bb2b. 
Thus, the (3+l)-dimensional point and space groups are 

rn2rn B b 2 b  determined automatically as 111 and N 111, respec- 
tively, under the modulation wave vector k = k2b * +c  *. 

Fig. 3. Convergent-beam electron diffraction (CBED) pattern of the 
incommensurate phase of Sr2Nb207 taken with [201] incidence at an 
accelerating voltage of 60 kV. The reflections at two levels indicated 
by arrows are the incommensurate ones. Others are fundamental 
reflections. Both the fundamental and incommensurate reflections 
show mirror symmetry perpendicular to the b axis. 

Fig. 2. Convergent-beam electron diffraction (CBED) pattern of the 
incommensurate phase of Sr2Nb~O7 taken with [010] incidence at an 
accelerating voltage of 60 kV. The reflections indicated by arrows are 
incommensurate reflections due to the displacive modulation. Other 
reflections are fundamental reflections due to the average structure. 
The fundamental reflections show mirror symmetry perpendicular 
to the a axis, but the incommensurate reflections show no mirror 
symmetry. 

Fig. 4. Convergent-beam electron diffraction (CBED) pattern taken from 
the incommensurate phase of Sr2Nb207 with the same incidence as 
in Fig. 3 but from a different specimen area. The pattern shows the 
same symmetry as in Fig. 3 but the intensity distribution is different. 
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Fig. 6 shows  a C B E D  pat tern  ob ta ined  wi th  the  s a m e  
e lec t ron  inc idence  as that in Fig. 5 but  wi th  the  disc 
s ize  set smal le r  than  that  o f  Fig. 5 to ident i fy  the  

Fig. 5. Convergent-beam electron diffraction (CBED) pattern of 
Bi2Sr2CaCu2Os+6 obtained with [001] incidence at an accelerating 
voltage of 60 kV. The intense diffraction discs are fundamental 
reflections. These reflections show mirror symmetry perpendicular to 
the a axis but do not show mirror symmetry perpendicular to the b 
axis. 

Fig. 6. Convergent-beam electron diffraction (CBED) pattern of 
Bi2Sr2CaCu208+6 obtained with the same incidence as that in Fig. 5, 
but the disc size is smaller. The incommensurate reflections, several of 
them being indicated by arrows, show mirror symmetry perpendicular 
to the a axis like the fundamental reflections. 

s y m m e t r y  o f  the  i n c o m m e n s u r a t e  reflect ions,  several  o f  
t h e m  be ing  ind ica ted  by arrows.  These  ref lect ions  s h o w  
mir ror  s y m m e t r y  pe rpend icu la r  to the  a axis but  do  
not  s h o w  mir ror  s y m m e t r y  pe rpend icu la r  to the b axis, 
as wi th  the  fundamen ta l  reflect ions.  The  s y m m e t r y  o f  
the  i n c o m m e n s u r a t e  ref lect ions  is conf i rmed  to agree  
wi th  those  expec ted  f rom (3+ 1) -d imens iona l  po in t -g roup  
s y m m e t r i e s  about  the  a axis ( 7 ) and  the  b axis ( 21 ) (rule 
1). Therefore ,  these  s y m m e t r i e s  conf i rm that the  mater ia l  

be longs  to the  ( 3 + l ) - d i m e n s i o n a l  space  group  N Bb2b 111" 

The  authors  thank  Dr A . Y a m a m o t o  o f  the  Nat ional  
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d iscuss ions .  The  present  w o r k  was  suppor ted  partly by 
a Gran t - in -Aid  for  Scientif ic  Research  f rom the Minis t ry  
o f  Educat ion ,  Sc ience  and  Culture,  Japan. 
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Abstract 

A structure-factor calculation for 2D rotation-translation 
coupling with planar molecules is presented. The start- 
ing point is a continuous description of the scattering- 
length-density distribution for a planar molecule that ro- 
tates around its symmetry axis. For the example of a 
molecule with threefold symmetry at a site with fourfold 
symmetry, the successive correction terms to the conven- 
tional rotational form factor are evaluated. This approach 
yields results equivalent to the split-molecule model. This 
is shown by an example of a structure refinement on 
Ni(ND3)6Br2 single-crystal data. 

1. Introduction 

The description of the thermal motion in the structure 
analysis of more complex molecular solids continues to be 
a difficult problem. Particularly in the presence of orien- 
tational disorder, powder samples give rise to only a few 
Bragg peaks of notable intensity, while there may be many 
model parameters. For atoms (ions), a rather detailed 
description of the probability density functions (p.d.f.) 
beyond harmonic motions or the corresponding struc- 
ture factors are available [cumulant expansion, Gram- 
Charlier expansion (International Tables for X-ray Crys- 
tallography, 1974)]. Frequently, disorder aspects are de- 
scribed by split-atom models. For (rigid) molecules or 
molecular groups, the above approaches can be used for 
describing the centre-of-mass (c.o.m.) positions of the 
molecules. Additionally, rotational motions and, possibly, 
orientational disorder have to be introduced. Again this 
can be done either with continuous or with discrete mod- 
els. In the first case, the density distribution on a spherical 
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surface (2D: circle) is expanded into symmetry-adapted 
surface harmonics (2D: trigonometric functions). In the 
second case, an appropriate set of discrete molecular ori- 
entations is chosen. 

Apparently, there are cases where c.o.m, motions and 
rotational motions do not occur independently and there 
is a pronounced rotation-translation coupling (RT coup- 
ling). A three-dimensional example, CBr4-I, was de- 
scribed quite a while ago (Press, Grimm & Hiiller, 1979; 
Hohlwein, 1984). 

(i) In the first case, a p.d.f., containing both a positional 
(c.o.m.) and an angular variable, is expanded (Taylor 
expansion) into symmetry-allowed terms and powers of 
displacement variables and derivatives of the p.d.f, are 
combined to give products that are totally symmetric with 
respect to the symmetry operations of the site symmetry. 
One may note a simple meaning of RT coupling: the orien- 
tational distribution depends on the c.o.m, position, which 
means that it is different for the equilibrium or displaced 
c.o.m, position. This is most pronounced for asymmetric 
molecules (like triangular groups etc.) at a site with a cen- 
tre of symmetry. 

(ii) An equivalent access is the 'split-molecule' ap- 
proach, which can be introduced in two successive steps. 
C.o.m. displacements lead to low-symmetry sites with 
a preference for certain orientations. The first approach 
consists in taking a discrete distribution of the c.o.m.'s 
over all symmetrically equivalent sites of a lattice posi- 
tion in combination with continuous orientational distri- 
butions. It is not particularly useful for practical purposes, 
but demonstrates the meaning of the model parameters of 
(i) more explicitly. The most general split-molecule ap- 
proach uses one or several discrete c.o.m, positions and a 
set of discrete orientations. A p.d.f, conforming with the 
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